
Lake Wobegon and the Panopticon
Simulations of reputation systems

Tom Slee

2024-10-16

Simulations show the role of social exchange vs transactional exchange
in rating systems.

Contents

0.1 Introduction . 2
0.2 A Jupyter notebook . 4
0.3 A model reputation system . 4

1 Code walkthrough 5
1.1 Parameters . 5
1.2 Actors . 6
1.3 Customers and providers . 8
1.4 A customer-provider interaction . 9
1.5 A customer-provider exchange . 10
1.6 A rating period . 12
1.7 A complete simulation run . 13
1.8 Plotting functions . 15

2 Simulations 17
2.1 Simulation 1: commodity exchange 17

Simulation 1 commentary . 18
2.2 Simulation 2: Lake Wobegon ratings 19

Simulation 2 commentary . 20
2.3 Simulation 3: introducing entitled customers 21

Simulation 3 commentary . 22

1

2.4 Simulation 4: more “honest” customers 23
Simulation 4 commentary . 24

3 Conclusion 24

0.1 Introduction

A two-sided reputation system is a rating system in which each party rates the other
(directly or indirectly). On Uber, Airbnb, eBay and other “sharing economy” platforms,
customers rate service providers, and service providers rate customers. Sites such as
Yelp and TripAdvisor also rely on customer ratings to recommend service providers
such as hotels or restaurants, and weight ratings by the influence of the rater.

Netflix, Amazon and others provide product recommender systems, in which the rat-
ings go only one way.

On the surface, two-sided reputation systems may look like product recommender sys-
tems. In each case the user typically enters a rating (out of five stars, perhaps) to
show their opinion of the thing they are rating. But while a movie does not change in
response to ratings, people can and do respond to being rated: they may get offended
by a low rating, or may be grateful for a high rating. Those doing the rating are aware
of this difference, and may take it into account as they make their rating.

In the few years since they have become widespread, two-sided reputation systems
have shown two seemingly contradictory characteristics:

1. The Lake Wobegon effect is that most ratings on reputation systems are very
high. While ratings of Netflix movies peak around 3.5 out of 5, ratings on sharing
economywebsites are almost all positive (mostly five stars out of five). The oldest
and most widely-studied reputation system is eBay, in which well over 90% of
ratings are positive; other systems such as BlaBlaCar show over 95% of ratings
as “five out of five”.

2. The Panopticon effect: service providers live in fear of a bad rating. They are
apprehensive that ratings given for the most frivolous of reasons by a customer
they will never see again (and who may not be able to identify) may wreck their
earnings opportunities, either by outright removal from a platform or by pushing
them down the rankings in search recommendations. Yelp restaurant owners rail
at “drive-by reviewers” who damage their reputation; Uber drivers fear being

2

“deactivated” (fired), which can happen if their rating slips below 4.6 out of 5 (a
rating that would be stellar for a movie).

So are reputation systems effective or not? Here’s the seeming contradiction:

1. The Lake Wobegon effect suggests that reputation systems are useless: they fail
to discriminate between good and bad service providers (my take on this from a
couple of years ago is here). This suggestion is supported by quite a bit of recent
empirical research which I have summarized in MY NEW BOOK!. Customers
are treating reviews as a courtesy, rather than as an opportunity for objective
assessment. Rather like a guest book, customers leave nice comments or say
nothing at all.

2. The Panopticon effect suggests that rating systems are extremely effective in con-
trolling the behaviour of service-providers, leading them to be customer-pleasing
(sometimes extravagantly so) in order to avoid a damaging bad review.

For some time, I’ve wondered whether these two effects can really both exist at the
same time, and if so what kind of incentives they introduce for both customers and
service providers. So I’ve built a simple model reputation system that mimics both
effects, and which shows that they are not contradictory after all, but can co-exist. I
use this model to explore where the wider use of reputation systems is likely to take
us. The short version is this:

• If we separate the impersonal market transaction aspect of a customer-provider
experience from the social aspect, then the Lake Wobegon effect and the Panop-
ticon effect are not contradictory at all. The transactional aspect is shaped by
the provider’s competence - a high competence leads to a good experience. The
social aspect is shaped by the provider’s (and customer’s) attitude - what kind of
person they are.

• Reputation systems do fail to discriminate among service providers of different
competence, as the Lake Wobegon effect suggests.

• Reputation systems encourage customers to behave in an entitled, demanding
manner rather than engaging in respectful relationship with service providers.

• Reputation systems encourage providers to adopt a servile attitude, indulging
customers’ whims and performing what sociologists call “emotional labour”.

• In summary, reputation systems do not improve quality so much as they impose
a regime of servility on service providers.

3

http://tomslee.net/2013/09/some-obvious-things-about-internet-reputation-systems.html
http://www.orbooks.com/catalog/whats-yours-is-mine-by-tom-slee/

0.2 A Jupyter notebook

This document is a Jupyter notebook (previously called an iPython notebook). The
code for the model is included as part of the document, and the graphs that show the
results are generated using the code in the document. If you want to reproduce or
extend this model, you can save the notebook, install the right packages in a Python
distribution, and run it on your own computer. In addition to the requirements for
Jupyter, you will need to install the following packages in a Python 3 environment:

imports and setup
%matplotlib inline
import random # random number generation (included with pyuthon)
import numpy as np # numerical libraries used by matplotlib
import matplotlib # plotting libraries
import matplotlib.pyplot as plt # more plotting libraries
import pandas as pd # data analysis library
import warnings
warnings.filterwarnings('ignore', category=UserWarning, module='pandas')

0.3 A model reputation system

Rating people is different to rating movies. When we watch a movie the relationship
is one way (the movie does not interact with us), but when we interact with others we
enter into a two-way relationship. In some cases this relationship is brief and not likely
to be repeated: taking a taxi or an Uber ride, eating in a fast-food restaurant in a city
you are passing through. In other cases the relationship is richer and repeated: a stay
at a Bed & Breakfast or an Airbnb (in a case where the host is present) may extend
over days; a regular customer at a restaurant may get to know the staff; a relationship
with a hairdresser or car mechanic may extend over years.

We now know, empirically, that the richer the customer-provider relationship, the more
likely the reputation system is to show a large number of high ratings. When customers
engage in a social relationship rather than a simple market transaction, they are reluc-
tant to give negative ratings no matter what ther experience. The rating becomes,
in effect, one part of the customer-provider relationship rather than an objective re-
view.

4

http://jupyter.org/

Here, I try to build a model that captures the essence of customer and provider
behaviour in a simple reputation system. Customers have the opportunity to rate
providers after each exchange. Each exchange, in turn, has components:

• a market exchange component, in which the customer’s satisfaction depends on
the provider’s competence (provider competence is fixed).

• a social component, in which the customer and provider engage in a give-and-
take exchange that make extend over several interactions. To get technical for
a moment, this social component is modelled as a repeated prisoner’s dilemma,
with the customer satisfaction and the provider satisfaction determined by the
prisoner’s dilemma payoffs. More details will become clear in the “Code walk-
through” sections below.

Most reputation systems use five-star ratings, but I simplify this to a simple “thumbs
up/thumbs down” binary option. Some reputation systems allow providers to rate
customers as well, and there are other variants (are ratings private? do actors see the
rating before they give their own?) but even when service providers can rate customers
there is an asymmetry at work, in that the service provider has more at stake in the
rating. Adopting a one-way system is, I contend, a reasonable simplification to produce
a simple and generic model.

With that summary, the next section (Code walkthrough) spells out the details of the
model, and the following section (Simulations) runs several simulations of customers
rating providers under various conditions. The document then concludes.

1 Code walkthrough

Here is an annotated implementation of the model. If you don’t know python and are
not interested in reading the code, the commentary should spell out what’s going on in
this model reputation system. If you are really not interested in this, the next section
should be comprehensible without reading this.

1.1 Parameters

Start with some constants that define the various things used elsewhere, in an attempt
to make the rest of the code more legible. You can probably ignore these for now.

5

The choices available to the customer and provider in their social exchange
CHOICE_GIVE = 0
CHOICE_TAKE = 1

The payoffs in the prisoner's dilemma.
PAYOFF_GIVE_VERSUS_GIVE = 1.0
PAYOFF_GIVE_VERSUS_TAKE = 0.0
PAYOFF_TAKE_VERSUS_GIVE = 1.5
PAYOFF_TAKE_VERSUS_TAKE = 0.5

Attitudes (prisoner's dilemma strategies)
ATTITUDE_GIVE = "Give"
ATTITUDE_GIVE_AND_TAKE = "Give & Take"
ATTITUDE_TAKE = "Take"

The customer rates the provider
RATING_THUMBS_UP = 1.0
RATING_THUMBS_DOWN = -1.0

1.2 Actors

Each customer or provider is an actor. The Actor() object represents the basic things
we need to know about each customer and provider.

Each actor has an attitude, which is expressed in their choices. (In game theoretic
terms, each has a strategy expressed in themethod called choose()). An actor’s attitude
is fixed for the course of a simulation. The attitude determines how the actor behaves
during each customer-provider interaction.

In each interaction, both actors choose one of GIVE or TAKE. Then they actors gain
or lose satisfaction depending on the choices, with the “payoffs” of satisfaction cor-
responding to the prisoner’s dilemma outcomes. If each actor chooses GIVE, that is
better for each of them than if both choose TAKE. However, the best of all for an actor
is to choose TAKE while the other actor chooses GIVE. To keep things simple, only a
very few attitudes are considered:

6

• Give: (provider only). The provider plays GIVE on every interaction. The
provider is compliant, or servile (or “customer is always right”), putting in full
effort no matter how demanding the customer is. This is a provider prepared to
endure the whims of the customer, engaging in “emotional labour”.

• Give & Take: (customer or provider) This attitude seeks to encourage
co-operative behaviour between customer and provider, and represents a collab-
orative, approach to self-governance (generous, but standing up for yourself if
the other actor turns nasty). The customer plays GIVE on the first interaction,
and after that plays by the “golden rule”, returning GIVE with GIVE and TAKE
with TAKE, (This is the “Tit for Tat” strategy for prisoner’s dilemma).

• Take: (customer only). This attitude simply plays TAKE at every opportunity, no
matter how the provider behaves. This customer is looking out for themselves,
no messing around.

The model can be extended easily so that both customers and providers may adopt any
of the three attitides (Give, Give & Take, Take), and the code does work for that, but
I’ve not discussed it here.

So here are the Actor declarations:

class Actor():

def __init__(self, actor_attitude):
self.attitude = actor_attitude
self.satisfaction = 0.0 # start off at zero satisfaction
self.exchanges = 0.0 # how many exchanges has the actor seen
self.previous_choice = None
self.exchange_score = 0 # score in a current exchange

def choose(self, prev_opponent_choice):
if self.attitude == ATTITUDE_GIVE:

choice = CHOICE_GIVE
elif self.attitude == ATTITUDE_GIVE_AND_TAKE:

if prev_opponent_choice is None:
choice = CHOICE_GIVE

else:
choice = prev_opponent_choice

elif self.attitude == ATTITUDE_TAKE:

7

choice = CHOICE_TAKE

Commented out, but you can re-instate if you want to explore this
Notwithstanding the above, a fraction of choices are random, for both
customer and provider. This represents misunderstanding and prevents
artifical fragile equilibria from playing too big a part in the outcome
#if random.random() < noise_fraction:
choice = random.choice([CHOICE_GIVE, CHOICE_TAKE])

return choice

1.3 Customers and providers

Customers and providers are both Actors, but the provider has additional character-
istics: a competence in providing their service, and a reputation (from the customers’
assessments). The rating system used here is a simple thumbs up or thumbs down
choice, and it is also helpful to track the number of each that a provider has accu-
mulated: the reputation can be computed from these as the fraction of thumbs up
ratings.

class Customer(Actor):

def __init__(self, attitude):
Actor.__init__(self, attitude)

class Provider(Actor):

def __init__(self, attitude):
Actor.__init__(self, attitude)
self.rating = 0.0 # +1 for each THUMBS_UP, -1 for each THUMBS_DOWN
self.rating_count = 0.0
self.competence = None

def reputation(self):
Value in the range [-1, +1]
if self.rating_count > 0:

8

return (self.rating / self.rating_count)
else:

return 0 # no ratings, no reputation

1.4 A customer-provider interaction

Now we have customer and provider objects, we can model an interaction between
the two. Each individual interaction between a customer and a provider is modelled
as a single play of the prisoner’s dilemma. The end result of each interaction is a score
for the customer and for the provider representing their overall satisfaction with the
interaction.

We’ll see what kind of experience an interaction may represent after the next definition,
of an exchange. Here is a function for an individual interaction:

def interact(customer, provider):
Each interaction in an exchange is a single play of the prisoner's dilemma
each actor makes a choice
Prisoner's dilemma choices: co-operate or defect
customer_choice = customer.choose(provider.previous_choice)
provider_choice = provider.choose(customer.previous_choice)
now compute the payoffs
if customer_choice == CHOICE_GIVE:

if provider_choice == CHOICE_GIVE:
customer_score = PAYOFF_GIVE_VERSUS_GIVE
provider_score = PAYOFF_GIVE_VERSUS_GIVE

elif provider_choice == CHOICE_TAKE:
customer_score = PAYOFF_GIVE_VERSUS_TAKE
provider_score = PAYOFF_TAKE_VERSUS_GIVE

elif customer_choice == CHOICE_TAKE:
if provider_choice == CHOICE_GIVE:

customer_score = PAYOFF_TAKE_VERSUS_GIVE
provider_score = PAYOFF_GIVE_VERSUS_TAKE

elif provider_choice == CHOICE_TAKE:
customer_score = PAYOFF_TAKE_VERSUS_TAKE

9

provider_score = PAYOFF_TAKE_VERSUS_TAKE
return (customer_choice, provider_choice, customer_score, provider_score)

1.5 A customer-provider exchange

Each customer-provider exchange has a transactional component and a social ex-
change component. The social exchange is made up of a number of interactions (see
above).

During each exchange the customer and provider gain or lose satisfaction. This satis-
faction has a social component, which marks their satisfaction (or otherwise) at the
interaction itself, and a transactional component, which is based on the provider’s com-
petence. If the exchange is a guest staying with a host, then each interaction might be
the welcome, a meal, a conversation. If the exchange is a hairdresser and a customer,
then the exchangemay represent a long relationship, with each interaction being a visit.
Of course, this is very schematic, but the idea is that rich exchanges can be modelled
with many interactions, while a thin exchange may be a simple interaction.

At the end of the exchange, the customer has the opportunity to rate the provider
(THUMBS_UP or THUMBS_DOWN). How the customer rates depends on the experi-
ence, and also on what kind of person the customer is (their attitude).

A satisfying experience depends on the quality of service (represented here as the com-
petence of the provider), but also on the social aspect of the interaction. Researchers
have found that when dealing with service providers, most customers care more about
the service provider’s attitude than about their competence; more about what kind of
person they are than about the transaction.

Provider competence does matter when evaluating the provider, but the importance of
that aspect of the exchange is higher when the social aspect is less important – when
there are few interactions in the exchange – and less important as the social aspect
becomes richer.

If the customer decides they have had a good experience (based on the outcome of
both the social exchange and the market exchange), then the customer will give a
THUMBS_UP rating. For customers who have had a bad experience, the behaviour is
different for each attitude:

10

• Customers playing Give & Take, who treat the exchange as a relationship, do not
give a bad rating if they have a bad experience; they simply give no rating at all,
not wanting the awkwardness of engaging in critisicm. There is strong evidence
that this is how many people actually behave in sharing economy reputation
systems.

• Customers playing Take, who focus on the market transaction will give a
THUMBS_DOWN rating if they have a bad experience.

Here is a function that describes a customer-provider exchange:

def experience_exchange(customer, provider, interactions):
an exchange between a customer and provider, consisting
of multiple interactions
for interaction in range(interactions):

(customer.previous_choice, provider.previous_choice,
customer_score, provider_score) = interact(customer,

provider)
customer.exchange_score += customer_score
provider.exchange_score += provider_score

normalize to a range between 0 and 1.5 (social bit is difficult)
customer.exchange_score = customer.exchange_score / interactions
provider.exchange_score = provider.exchange_score / interactions

def rate_exchange(customer, provider, interactions):
to conclude the exchange, the customer may rate the provider
Competence becomes less importance as the number of interactions grows.
Update utilities
threshold_score = 0.75
mean_competence = 0.5
satisfaction_threshold = (threshold_score + mean_competence)/2.0
track each actor's overall satisfactin throughout all their exchanges
tolerance = 0.00001 # deal with floating point comparisons

if (customer.exchange_score > satisfaction_threshold - tolerance):
good_experience = True

else:
good_experience = False

11

if customer.attitude == ATTITUDE_GIVE_AND_TAKE:
only report good outcomes
if good_experience:

provider.rating_count += 1.0
provider.rating += RATING_THUMBS_UP

elif customer.attitude == ATTITUDE_GIVE:
always give a good rating, no matter what
provider.rating_count += 1.0
provider.rating += RATING_THUMBS_UP

elif customer.attitude == ATTITUDE_TAKE:
tell the truth
provider.rating_count += 1.0
if good_experience:

provider.rating += RATING_THUMBS_UP
else:

provider.rating += RATING_THUMBS_DOWN

def exchange(customer, provider, interactions):
for actor in [customer, provider]:

actor.exchanges += 1.0
actor.exchange_score = 0.0
actor.previous_choice = None

customer.exchange_score = provider.competence # transaction satisfaction
if interactions > 0:

experience_exchange(customer, provider, interactions)
rate_exchange(customer, provider, interactions)
customer.satisfaction += customer.exchange_score
provider.satisfaction += provider.exchange_score

1.6 A rating period

Each simulation is run over a number of rating periods. In each rating period, every
customer chooses a provider and they have an exchange. Depending on the number of
customers and providers, this may mean that a provider undertakes several exchanges,
one, or none.

12

The customer ratings are collected together as a reputation score for each provider,
and the higher a provider’s reputation, the better their chance of being chosen by a
customer in the next rating period. In this way, the reputation feeds into the provider’s
life story.

Here is the function that describes a rating period:

def rating_period(period, sim):
Match up customers with providers: many customers may undertake an exchange with one provider
in a single period.
First assign ranges weighted by reputation
maximum = 0.0
store_front_max = [] # a list of values partitioning a range so that exchanges can be matched
for provider in sim.providers:

maximum += 2.0 + provider.reputation()
store_front_max.append(maximum)

Each customer chooses a provider and undertakes an exchange with them
for customer in sim.customers:

choose a value between zero and the maximum
val = random.uniform(0.0, maximum)
find which provider it is (inefficiently)
for provider_id in range(len(sim.providers)):

if val <= store_front_max[provider_id]:
break

exchange(customer,
sim.providers[provider_id],
sim.interactions_per_exchange)

1.7 A complete simulation run

To run a complete simulation,the parameters that govern the simulation are specified
in the constructor for the Simulation oject, and then Simulation.simulate() is called
to carry out the simulation. The results of the simulation are stored in the Simulation
object so they can be analyzed:

13

class Simulation():

def __init__(self,
customer_counts,
provider_counts, # dict of {"attitude": count}
rating_periods,
interactions_per_exchange):

self.rating_periods = rating_periods
self.interactions_per_exchange = interactions_per_exchange
self.customers = []
self.customer_attitudes = []
random.seed(1)

for attitude, count in customer_counts.items():
if attitude not in self.customer_attitudes:

self.customer_attitudes.append(attitude)
for i in range(count):

self.customers.append(Customer(attitude))
self.providers = []
self.provider_attitudes = []

for attitude, count in provider_counts.items():
if attitude not in self.provider_attitudes:

self.provider_attitudes.append(attitude)
for i in range(count):

self.providers.append(Provider(attitude))
assign competence uniformly in (0,1) but randomly
shuffled_providers = list(range(len(self.providers)))
random.shuffle(shuffled_providers)
for index, provider_id in enumerate(shuffled_providers):

self.providers[provider_id].competence = ((index + 1.0) /
(len(self.providers) + 1.0))

def simulate(self):
for period in range(self.rating_periods):

rating_period(period, self)

14

1.8 Plotting functions

These plotting functions generate graphs to help make sense of the simulations. You
can ignore them.

def plot_by_competence(sim):
dfp = pd.DataFrame({

"attitude": pd.Series([provider.attitude for provider in sim.providers]),
"competence": pd.Series([provider.competence for provider in sim.providers]),
"satisfaction": pd.Series([provider.satisfaction / provider.exchanges

for provider in sim.providers]),
"exchanges": pd.Series([provider.exchanges for provider in sim.providers]),
"reputation": pd.Series([provider.reputation() for provider in sim.providers]),

})
markers = ('o', 'o', '*')
colors = ('red', 'blue', 'green', 'black')
(marker_size, width, opacity) = (50, 0.8, 0.6)
fig, axes = plt.subplots(1, 4, figsize=(12, 3)) # rows, cols
plt.style.use('ggplot')
plot one set of points on each axis, for each provider attitude

dfp["reputation"].plot(kind="hist", alpha=opacity, ax=axes[0], xlim=[-1.1,1.1], title="A1")
axes[0].set_xlabel('Provider Reputation')
axes[0].set_ylabel("Number of providers")
for index, attitude in enumerate(sim.provider_attitudes):

dfp[dfp["attitude"] == attitude].plot(
kind="scatter", x= "competence", y = "satisfaction", color=colors[index],
marker=markers[index], s=marker_size, alpha=opacity,
ax=axes[1], xlim=[-0.1,1.1], title="A2")

dfp[dfp['attitude'] == attitude].plot(
kind="scatter", x= "competence", y = "reputation", color=colors[index],
marker=markers[index], s=marker_size, alpha=opacity,
ax=axes[2], xlim=[-0.1,1.1], title="A3")

dfp[dfp['attitude'] == attitude].plot(
kind="scatter", x= "competence", y = "exchanges", color=colors[index],
marker=markers[index], s=marker_size, alpha=opacity,
ax=axes[3], label = attitude, xlim=[-0.1,1.1], title="A4")

15

axes[1].set_xlabel('Provider Competence')
axes[1].set_ylabel('Provider Satisfaction')
axes[2].set_xlabel('Provider Competence')
axes[2].set_ylabel('Provider Reputation')
axes[3].set_xlabel('Provider Competence')
axes[3].set_ylabel('Exchanges')
axes[3].legend(fancybox=True, shadow=True, frameon=True,

loc='upper left', bbox_to_anchor=(1.05, 1.0));
plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0)
plt.show()

def plot_by_attitude(sim):
dfc = pd.DataFrame({

"attitude": pd.Series([customer.attitude for customer in sim.customers]),
"satisfaction": pd.Series([customer.satisfaction / customer.exchanges

for customer in sim.customers]),
"exchanges": pd.Series([customer.exchanges for customer in sim.customers]),

})
dfp = pd.DataFrame({

"attitude": pd.Series([provider.attitude for provider in sim.providers]),
"satisfaction": pd.Series([provider.satisfaction / provider.exchanges

for provider in sim.providers]),
"reputation": pd.Series([provider.reputation() for provider in sim.providers]),
"exchanges": pd.Series([provider.exchanges for provider in sim.providers]),

})
sns.set_context("notebook", font_scale=1.0, rc={"lines.linewidth": 2.5})
(width, opacity) = (0.4, 0.6)
fig, axes = plt.subplots(1, 4, figsize=(12, 4)) # rows, cols
plt.setp(fig.axes, xticklabels=sim.customer_attitudes)
plt.style.use('ggplot')
for i in range(len(axes)):

axes[i].set_xlabel("Attitude")
df0 = pd.pivot_table(dfc, index=["attitude"], values="satisfaction")
df0.plot(ax=axes[0], kind="bar", alpha=opacity, width=width, title="B1")
axes[0].set_ylabel("Customer Satisfaction")
df1 = pd.pivot_table(dfp, index=["attitude"], values="satisfaction")

16

df1.plot(ax=axes[1], kind="bar", alpha=opacity, width=width, title="B2")
axes[1].set_ylabel("Provider Satisfaction")
df2 = pd.pivot_table(dfp, index=["attitude"], values="reputation")
df2.plot(ax=axes[2], kind="bar", alpha=opacity, width=width, ylim=[-1.0,1.0], title="B3")
axes[2].set_ylabel("Provider Reputation")
df3 = pd.pivot_table(dfp, index=["attitude"], values="exchanges")
df3.plot(ax=axes[3], kind="bar", alpha=opacity, width=width, title="B4")
axes[3].set_ylabel("Exchanges per Provider")
plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0)
plt.show()

2 Simulations

The model description is now complete, and we can run some simulations. Recall that
the point of this exercise is to investigate reputation systems that display two seemingly-
contradictory phenomena seen in the real world: the Lake Wobegon effect in which
(almost) everybody is given a high rating, and the Panopticon effect in which service
providers live in fear of a bad rating. In particular:

• what qualities does such a system encourage in providers? (level of competence,
attitude)

• which customers are getting what they want?

2.1 Simulation 1: commodity exchange

In the first simulation there is no social aspect to the exchange (interactions_per_exchange
= 0) so the reputation of each provider depends on their competence. The exchange
is just like a market transaction for a commodity: there is no back and forth between
customer and provider. The following code block assigns 240 customers to the Take
attitude (they will rate positive experiences and negative experiences), distributes 80
providers evenly between “Give & Take” and the more indulgent “Give” attitudes, and
runs them through 100 rating periods.

(Please ignore the pink warning box: this is a bug in matplotlib that will be fixed
soon).

17

sim = Simulation(
customer_counts = {ATTITUDE_TAKE: 240},
provider_counts = {ATTITUDE_GIVE: 40, ATTITUDE_GIVE_AND_TAKE: 40},
rating_periods = 100,
interactions_per_exchange = 0
)

sim.simulate()
plot_by_competence(sim)
plot_by_attitude(sim)

Simulation 1 commentary

In this case, attitude is irrelevant because there is no relationship. A3 and B3 show
that providers with a sub-par competence get rated badly and have a reputation of
minus-one, while providers with a greater-than-average competence get rated with a
thumbs-up by everyone.

18

This reputation carries over into the number of exchanges that each provider gets:
those with a good reputation get around 200 visits from customers, while those with
a good reputation mostly get about 500: competent providers get more business (A4).
Meanwhile, attitude is irrelevant (B4).

In this special case the charts of provider satisfaction (A2, B2) are irrelevant because
provider satisfaction comes only from the social aspect of the exchange, and in this
case there is no social aspect.

This is how reputation systems are supposed to work, but it is not how reputation
systems work in the real world, where most providers get good reputations and where
the correlation of competence and reputation is weak. Figure A1 shows a distribution
of ratings in whichmany providers have been given a bad reputation, completely unlike
most real-world reputation systems.

2.2 Simulation 2: Lake Wobegon ratings

This simulation looks at the other extreme, where the provider’s competence is unim-
portant and the social relationship is all that matters. Just as we don’t rate friends
based on their skills (except perhaps in extreme circumstances), but on their personal-
ity and integrity, so competence is not important here.

The simulation again has 240 customers and 80 providers (as weill all the simulations)
and the providers are again evenly distributed between being “Give & Take”, and being
servile (“Give”). Again there are 100 rating periods, but this time there are 25 interac-
tions to every exchange, so the social aspect of the exchange overwhelms the market
aspect.

sim = Simulation(
customer_counts = {ATTITUDE_GIVE_AND_TAKE: 240},
provider_counts = {ATTITUDE_GIVE_AND_TAKE: 40, ATTITUDE_GIVE: 40},
rating_periods = 100,
interactions_per_exchange = 25
)

sim.simulate()
plot_by_competence(sim)
plot_by_attitude(sim)

19

Simulation 2 commentary

A1 shows that all providers have a very high reputation (Lake Wobegon). A3 confirms
that this high reputation means nothing: it does not distinguish based on competence
or on attitude, because the “Give & Take” customers only give good ratings, keeping
bad experiences to themselves. The reputation system is weak, and A4 shows that
there is no correlation between competence, attitude, and the number of exchanges a
provider gets.

But that does not mean that things are bad. B1 shows that customers get a high level of
satisfaction (0.9) from the relationship aspect of the exchange - themutual cooperation
of provider and customer. B2 shows that providers also dowell (0.7 ormore). So things
are good, but different. This describes a self-governing system, where reputation does
not matter, but customer and provider each induce the other to be generous.

20

2.3 Simulation 3: introducing entitled customers

Now make one change: instead of all customers displaying a Give & Take attitude, one
in ten will be demanding, and will play TAKE on all aspects of the exchange. Even
though the exchange is primarily social, they may rate positively if they get a good
outcome (which means, if the provider is compliant) or badly if they do not.

sim = Simulation(
customer_counts = {ATTITUDE_GIVE_AND_TAKE: 216, ATTITUDE_TAKE: 24},
provider_counts = {ATTITUDE_GIVE_AND_TAKE: 40, ATTITUDE_GIVE: 40},
rating_periods = 100,
interactions_per_exchange = 25
)

sim.simulate()
plot_by_competence(sim)
plot_by_attitude(sim)

21

Simulation 3 commentary

A1 shows a distribution of reputations that is similar to many sharing economy reputa-
tion systems: a large number of top-rated providers, and a few who are rated slightly
less than perfect. A3 shows that the distinction has nothing to do with provider com-
petence, but is shaped by the provider’s attitude, with a “Give” attitude leading to a
higher reputation than a “Give & Take” attitude.

Those providers who look for a reciprocal relationship get thumbs up from similar
customers, but they get thumbs down from the entitled customers: after the provider
response to the customer’s initial TAKE with a TAKE of their own, the relationship
goes sour and settles in to a low-scoring “Take - Take” trap. Those providers who are
indulgent (“Give”) get exploited: they have to put up with the continual Take choices
of the customer with a smile, but do get rewarded with a higher reputation (A3, B3),
and so get a little more business (A4, B4).

A2 and B2 shows that the reciprocal providers have a slightly better experience than
compliant providers.

B1 shows that the two customer types have a similar level of satisfaction. The reciprocal
customers do well with all providers, while the entitled customers do less well with
the reciprocal providers (they do not get along), but happily exploit the indulgence of
the compliant providers.

So what is happening here is just what we see in most service reputation systems.
From the point of view of the rating system provider itself, this is a better result: the
entitled customers are the ones behaving just as they should - not being biased by
their relationship with the service provider, delivering an “honest” assessment of the
quality of their experience. The collaborative customers, building a relationship with
the provider, and reluctant to snitch on them through the rating system, are the ones
that are in the wrong from the reputation system point of view.

Seen from anywhere other than the perspective of the platform provider, this setup pan-
ders to demanding consumers by requiring service providers to engage in emotional
labour.

22

2.4 Simulation 4: more “honest” customers

This final simulation increases the proportion of entitled customers (or “honest raters”
as the platform provider would see it) to see what happens as the rating system “im-
proves”.

If Simulation 3 describes the way that reputation systems currently work, Simulation
4 describes the way that the platform owners (sharing economy companies and rating
providers) would like them to work: they expect customers to be “honest” - report good
and bad experiences, and tomaintain an emotional distance from their service provider
(to avoid “bias”). These ideal customers are not committed to the social exchange (not
“Give & Take”), but instead treat the experience as one to be judged.

sim = Simulation(
customer_counts = {ATTITUDE_GIVE_AND_TAKE: 120, ATTITUDE_TAKE: 120},
provider_counts = {ATTITUDE_GIVE_AND_TAKE: 40, ATTITUDE_GIVE: 40},
rating_periods = 100,
interactions_per_exchange = 25
)

sim.simulate()
plot_by_competence(sim)
plot_by_attitude(sim)

23

Simulation 4 commentary

The split between Give & Take providers and compliant providers has grown. A2 and
B2 show that compliant providers are having a miserable experience (their satisfac-
tion is lower than that of the Give & Take providers), but their reputation is a lot bet-
ter (thanks to the entitled customers) and so their business prospers do better (more
exchanges). The compliant providers are ruling the roost. B1 shows that entitled
customers are having more satisfying experiences. The high reputation for compliant
providers is rewarded with higher traffic, and entitled customers do very well from
compliant providers by exploiting their indulgent behaviour.

3 Conclusion

The fact that Simulation 2 gives a rating distribution far more like current sharing econ-
omy reputation systems than Simulation 1 demonstrates the important role of social
exchange compared to a pure market or transactional exchange in most customer–
service provider exchanges. It is this social exchange that is at the root of the Lake
Wobegon effect, where all providers are above average. Reputation systems do indeed
fail to discriminate on the basis of competence (quality).

Simulation 3 shows that a small number of entitled customers can induce a Panopticon
effect. Service providers who engage in Give & Take exchanges with their customers
(even very competent ones) risk being given a negative review, which will damage
their business. The incentives of the reputation system encourage providers to indulge
their customers, in order to avoid this unlikely but damaging judgement.

24

Simulation 4 shows that, if reputation systems spread and customers become used
to rating people in an “honest” fashion, we are building a terrible world for service
providers. They must engage in emotional labour, catering to customer whims, or risk
their livelihood. The Panopticon is here. The reputation systems continue to fail, it
should be noted, to discriminate based on the competence of the service provider –
instead of changing quality, they change attitude.

The Lake Wobegon effect and the Panopticon effect can coexist, and are coexisting.
Reputation systems as they currently stand are failing to discriminate based on quality.
But there is only one thing worse than a reputation system that doesn’t work, and
that’s a reputation system that works: Simulation 4 shows a dystopic future for service
providers, in which their careers are being shaped by reputation systems that are not
working as advertised, but are working to compel compliance.

25

	Introduction
	A Jupyter notebook
	A model reputation system
	Code walkthrough
	Parameters
	Actors
	Customers and providers
	A customer-provider interaction
	A customer-provider exchange
	A rating period
	A complete simulation run
	Plotting functions

	Simulations
	Simulation 1: commodity exchange
	Simulation 1 commentary

	Simulation 2: Lake Wobegon ratings
	Simulation 2 commentary

	Simulation 3: introducing entitled customers
	Simulation 3 commentary

	Simulation 4: more ``honest'' customers
	Simulation 4 commentary

	Conclusion

